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The process of above threshold ionization by plane polarized intense radiation fields has enabled cold
ionized plasmas to be created. The final temperature depends on the heating process during the laser
pulse. Collisional or inverse bremsstrahlung is a major effect at high density. It is argued that under
these extreme conditions the conventional treatments of the Coulomb logarithm for electron-ion col-
lisions is inadequate. Using a simple impact, or classical, approximation, corrected expressions and sim-

ple approximations are derived for this heating rate.

PACS number(s): 52.50.Jm, 52.40.Nk, 52.25.Rv

I. INTRODUCTION

The impact approximation, originally misnamed the
classical theory, was developed independently by the
present author [1] and Bunkin, Kazakov, and Federov [2]
over 20 years ago. The absorption in an electron—heavy-
particle collision from the incident electromagnetic wave
to thermal energy is identified with the reorientation of
the quiver into translation motion in an elastic collision.
The model is thus extremely simple and involves only
averages over the dynamics of representative collisions.
It is therefore particularly suited for direct calculation of
the absorption rate, provided the electron distribution
function is known. It has been shown by several authors
[3-5] that this approach is asymptotically related by a
saddle point integration to direct methods using either
quantum or classical mechanics.

The calculation of absorption is based on the momen-
tum transfer cross section for electron scattering. In a
plasma this is dominated by long-range small-angle
deflections. The cross section can be conveniently writ-
ten in terms of the inner b;, and outer b, ,, impact pa-
rameters

o'd:47rb1?nin ln[{l+(bmax/bmin)2}l/2] . (1)

The inner is either the Landau parameter Ze?/mv? for
classical or the electron wavelength A /mv for quantal
collisions, the appropriate value being the larger: v is the
electron velocity, e and m its charge and mass, Z the ion
fractional charge, and 4 Planck’s constant. We shall con-
centrate on classical collisions in this paper, although the
generalization will be considered. The outer impact pa-
rameter is determined by the requirement that the col-
lision be completed in a time short compared to the
period of the field, i.e., b_,, ~v/w, o being the angular
frequency of the field. If this condition is not established
the electron scattering is averaged over the phase of the
field and no net absorption results. This functional form
is well established in alternative calculations and was dis-
cussed in some detail in Ref. [5]. Unfortunately alterna-
tive methods of calculation are all perturbative in some
form. As a result it is only possible to calculate one of
the cutoffs properly, the other (often the inner) being in-
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troduced in an ad hoc fashion. Fortunately the outer
only appears as a logarithmic ratio in the cross section
and this uncertainty as to the absolute value of b_,, usu-
ally results in little error. The momentum transfer cross
section is generally used for the calculation of transport
properties, in which case b, is the Debye length Ap.
Since Debye screening theory holds if A, >>r, the inter-
particle separation length, and the collision approxima-
tion is ro>>b_ ., the transport theory is only valid if
bax >>bin. As a result the “Coulomb” logarithm may
be simplified to its usual form

InA=~1n[b,,/bnin] - (2)

In the case of absorption, however, the electromagnetic
wave must propagate in the plasma, so that o > wp, the
plasma frequency. Consequently, if the field is weak
v ~vr, the thermal speed b_,, <Ap, since Ap ~vy/wp,
and only a limited range of impact parameters gives rise
to absorption. Absorption is therefore more purely two
body than other collisional processes. In particular, if
the electron temperature is low, b, <b_, and the ap-
proximation (2) for the Coulomb logarithm will give rise
to negative absorption. In fact, using the correct form (1)
we see that 0,~27b2, , as may be expected physically.
However, calculation in this regime will be unreliable as
the outer impact parameter is only known to an arbitrary
factor of order unity, where the square will appear as a
multiplying factor in the final result.

At the other extreme when the field is strong, v ~u,
the amplitude of the quiver velocity (uy>>v;), and
b ax ~Ug/w, the amplitude of the quiver displacement.
In this limit the electrons oscillate as a fluid continuum
about the ions. Since w>wp the electron fluid cannot
respond to the induced electric field fluctuation and
screen it over distances greater than the Debye length as
in the weak field and static cases. Consequently, the elec-
trons can respond at ion separations (or impact parame-
ters) ~uy/w, even if this is significantly greater than A,.
Thus again in this limit we obtain b, ,, ~v/w, as before.
Clearly, if uy/w >>Ap this may result in a substantial in-
crease in the absorption rate. In this limit the electron
speed varies from vy to u,. At the lower limit, the
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Coulomb logarithm may again be small, although the
value at the upper limit is large. Consequently, the exact
value of the logarithm (1) must be used instead of the ap-
proximation (2) if significant error is to be avoided. This
is especially severe as the correct contribution from the
region v ~0 is small as the term o, /u ~u°>—0, whereas
the approximate form gives o, /u ~1/u In(u)— — .

In the past this has caused little problem and the form
(2) has always been used to calculate absorption. This
has been satisfactory as the temperature has been rela-
tively high and the density close to critical (0~wp).
However, the advent of multiphoton ionization with ul-
trashort pulse lasers has given rise to very low tempera-
ture, highly ionized plasma. As a result the correct form
(1) must be used. In this paper we will derive modified
absorption formulas for this regime. The development of
x-ray laser action during recombination following above
threshold ionization (ATI) by short pulse laser break-
down is critically dependent on the temperature at the
end of the pulse. At the relatively high pressure involved,
inverse bremsstrahlung absorption may be one of the lim-
iting factors involved in assessing the viability of this ap-
proach.

Although the duration of the pulse is short, it encom-
passes many periods of the wave. Since each impact has
a duration less than the period and has a range, which
will vary over the quiver oscillation, large compared to
the inner impact parameter, the electron is scattered by
many long-range small-angle collisions in a quasicontinu-
ous fashion. As a result, although the net deflection
through the period may be small and the effective col-
lision time for 90° scattering large compared to the pulse
duration, appreciable energy gain occurs as a significant
fraction of the large quiver energy. The impact approxi-
mation being essentially phenomenological treats simul-
taneous multiple collisions on an equal footing with
binary, the only proviso being that the “coherence time”
of each individual scattering be short compared to the
period of the electromagnetic wave. In consequence
there is a direct relationship with the collective plasma
calculation methods [6].

The rate of energy absorption depends on the details of
the electron velocity distribution. In much early work it
was assumed that electron-electron collisions were
sufficiently fast that a Maxwell-Boltzmann distribution
was maintained. However, Langdon [7] showed that if
the fields were moderately strong (with the quiver speed
approximately the thermal speed) the thermal distribu-
tion was not sustained and a self-similar form developed.
In very strong fields, Jones and Lee [8] showed that the
distribution reverted to a form of Maxwellian. As we are
interested only in the strong field case at low tempera-
ture, we consider only a Maxwell distribution.

The low temperatures required for x-ray laser action in
ATI are found only if the radiation is plane polarized.
We therefore restrict our study to this case, although the
extension to a different polarization form is straightfor-
ward. The emphasis of the calculation is towards high
fields where the quiver energy is much larger than the
thermal and the results using a Maxwell Boltzmann ve-
locity distribution can only be considered to be valid in
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this condition. The approach is therefore to use asymp-
totic methods. Two methods of calculation are used.
The first direct route involves the exact calculations of
the absorption rate for the general cross section Eq. (1).
The result involves a complex sum that can be performed
numerically with some difficulty. The alternative ap-
proach is to use an asymptotic approximation that yields
a simple integral. The relationship between the two
methods is explored and used to derive a general high
field solution. The use of the cutoffs in Eq. (1) introduces
a further restriction on the range of the solution, namely,
that total velocity is sufficiently large that b, >>b .., or
max(vrug)>>[Ze’w/m]'/>.

This model can be related to the standard theory of
single photon bremsstrahlung emission from a hydrogen-
ic ion developed by Sommerfeld [9] and by Menzel and
Pekeris [10], which is the reciprocal process related by
detailed balance in the weak field (uy <<v;) limit. The
limiting cases were identified by Elwert [11] and Oster
[12], who showed that the nature of the solution depend-
ed on the “principal quantum numbers” of the electron
before n,=Ze?/#v, (#i=h/27) and after n,=Ze>/#v,
the collision and the threshold parameter x =#w/imvi.
For x <<1 and |n;—%,| <<1 the logarithmic form of Eq.
(1) is recovered, corresponding to scatterings for which
the photon energy is sufficiently small that the path is
nearly a straight line and the collision is completed in the
period of the wave so that the impact is not modified by
the field: this is the impact approximation and 7,=,
since the process involves only a single photon. This con-
dition can also be written (2v/w)/(#i/mv)>>1, i.e., the
quantum form of b_,, >>b_ ... For 1,,17,<<1 the Born
(quantum) approximation is recovered and for
71,1, >>1/x the classical. Combining the latter condi-
tions 7,x >>1 we obtain (2v/w)/(Ze?/mv?)>>1, or
b ax >> b min Once again. Thus within this theory the con-
dition b,,,, >>b ., for which the impact model is valid,
is seen to be associated with small photon energy. When
this condition is violated (b,,, S b, ), the parameter x is
not in general small.

A very useful summary of the approximations and
their regimes has been given by Brussaard and van de
Hulst [13]. In this paper we limit consideration to nonre-
lativistic electrons, although the model is capable of gen-
eralization to include relativistic effects.

II. THE IMPACT APPROXIMATION

The impact approximation starts from a very simple
dynamic result, namely, that in a collision where the
quiver velocity is instantaneously u and the initial and
final total velocities are v and v’, the gain in the transla-
tional or thermal energy is mu-(v—v’). From this result
we may obtain the energy gain in an average collision by
averaging over the phase of the quiver motion (elec-
tromagnetic wave), the cross section, and the velocity dis-
tribution of the electrons. Averaging this result over the
angular distribution of the cross section we obtain the en-
ergy gain from electrons of thermal velocity v, and
quiver velocity u per unit time [1,2]

R =mnvu-vo,(v) , (3)
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where the total velocity v=u+v; and the momentum
transfer cross section for classical collisions is given by (1)

2
o =27 {—Zi— 1)

»6
(Ze’w/m)* |~

21
—In{l1+
om |

We may now proceed in two alternative ways depending
on the order in which the averages over the field and the
distribution are performed. The first of these is complex,
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but yields an accurate theory, while the second gives sim-
ple but approximate results.

A. Accurate averaging

The accurate calculation of the energy absorption for a
Maxwell-Boltzmann electron distribution was developed
by the present author [14]. It was shown that the aver-
aged energy absorption rate per electron per unit time
(corrected for an omitted factor) was given by

R=2n,m(m/2akT,)""* 3 [2n/(2n +1D][1/(nD?IM(L,(n +1),mu} /2kT,) exp( —mu3 /2kT,)

n=1

X fdv o4 mugv /2kT, )?

where n; is the ion density, T, is the electron tempera-
ture, u, is the amplitude of the quiver velocity, and
M (a,b,x) is a confluent hypergeometric function. Equa-
tion (4) forms the starting point for much of our investi-
gation.

For the case b, >>b_;,, when the Coulomb loga-
rithm may be written as in (2), Eq. (4) may be directly in-
tegrated to give

R=2n,m(m /2wkT,)"" (mu} /2kT,)
X A[ InAS$(x)+38,(x)] , (5)

where 4 is given subsequently in Eq. (9) and

A=(2kT,/m)*/(Ze*w/m), x =mu}/2kT, (6)

$1(x)=3 E [1/2n +1D)1x" VM (L, (n +1),x)e >, (7

n=1

8$1(x) 3772 732 | Lin(4x)+(y /2+ In2—1)—

$y(x) 37~ V2 32

—771' 3 TG+t +n)(x~"/nln)

n=1

Generalizing this result we obtain
R=2n,m(m /2wkT,)"*(mu} /2kT,) AS(A,x) , (13)

where

1
2 2n+1)

X fowz‘"‘"”ln[l-i-xf]

SA,x)=37"12x 372 T,(x)[1/(n —1)1]

Xe %z ,
T,,(x)=\/7rx(”+“2’M(—21—,(n +1),x)e " */n!.

(14)
(15)

713 TE+mT(d+n)x""/nln

n=1

"exp(—mv2/2kT,) , 4)

$(x)=3 F [1/2n +D]P(n)x* "M (L, (n +1),x)e >

n=1
(8)
and
Z%e*
2

o4=Av $/(Ze’o/m?],  (9)

where ¥(n) is the digamma function. &,(x) and &,(x)
take the analytic forms [14]

81(x)=,F,(2,3;5,2;—x)

d (10)
Sl(x)+ye?2(x)=—gng2(3 (3+8)4,2; —x)s=0 >
where y is Euler’s constant (=0.577215665). The

corrected asymptotic forms of &,(x) and &,(x) are ob-
tained from these functions:

’ (11)

L(Indx)*—(y /2+ In2—1)>—7?/24—1

In(4x)+1/n— 3 22—’"])” : (12)
rs

m=1 (m*=—

For large x and (x —n)>>1, the asymptotic form of
T,(x) is derived in the Appendix. The complete term is
shown in Fig. 1 and a good approximation is

1/V1—n/x], n<x—Vx

0 otherwise. (16)

T,(x)= {
The maximum value of T,(x) is slightly less than that
given above

T pax (X)=0.975x 174
It will be more convenient to work in terms of the func-
tion

17

’
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FIG. 1. Comparison of the function T,(x) evaluated directly
( ) with the asymptotic result (- - - .) for x =10° and 10°
and varying index n. The point marks the approximate limit ac-
cording to Eq. (17).
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S(A,x)=1mw1"2x32$(R, x) (18)

in terms of which
R=2nma-LsEx) . (19)
m uo

The function S itself is also conveniently split into the
terms already calculated S| and S, and a correction
S(A,x)=S,(A,x)+S5"(A,x)

=5,(x)InA+3S,(x)+S"(&,x) , (20)

FIG. 2. Plot of the classical correction function
§(1,x)(——) and the terms & (x)(— — —) and &(x)
(«+ )

where
SEx)= 3 =T (x)—
S 2n+1) T (n—1)
xfo“’ In[1+1/A23)z2" " Ve~7dz . (21)

Since the integrals have values ~ 1/n3, this usually forms
a rapidly convergent series. For small n the integral is
easily evaluated by Gauss-Laguerre integration and for
large n by the method of steepest descent. Figure 2
shows a plot of § for A=1 obtained by direct summa-
tion. It can be seen that the correction is generally quite
small, unless x is small where the approximations are in-
volved.

In the high field limit for which a Maxwell-Boltzmann
distribution is appropriate, the sum (21) is easily obtained
by noting that T,(x)=1. Figure 3 shows a plot of this
function, compared with an approximation to be dis-
cussed later.

B. Asymptotic averaging

A simpler method of averaging that yields approximate
results in the limit x large is to consider the behavior of
particles of fixed thermal velocity vy for which we obtain
[1] that the energy gain for an electron per unit time with
quiver speed u

0, UT>|u|
R =~ mn; AIn{A) (22)
T vr <l|ul,

where (A) is an appropriate average of A. The zero for
|u| <vg, which is a consequence of the averaging of A, is
only important for low fields uy<<vy and is discussed
elsewhere [5]. Averaging over the period of the wave

1 pas2 In[(A(uysing)) 1dO

R=2mn, 4> : L@
T ug vo sin@

This results is exact in the limit v —0, i.e., ug >>vy, the
case of interest in ATI, and can form the basis of an ap-
proximation for finite temperature. Let us assume that
(A) is replaced by an average over the quiver oscillation;
then

121
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FIG. 3. Plot of the classical correction function S'(A,x) for
large x compared with its approximation (— — —) given in Eq.

(52). For A <1 the function S”’(A,x) is shown.
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§=£mni A—l— InA In
T Uy

y Up >> Ur (24)
Ur

and averaging over the thermal distribution
R= lmn,.A;L In(B)[ L In(4x)+(y /2+ In2—1)] . (242)
™ 0

A comparison with Egs. (5) and (11) shows this to be
identical provided we neglect the term associated with
the variation of the logarithm. We shall show in the next
section that (23) is the asymptotic limit of (5) as x — 0.

III. RELATIONSHIP BETWEEN THE TWO METHODS

It is clear from this result that the two approaches
have a clear relationship in the limit x — . In particu-
lar, if we set v =1/2kT,/m and x =(uy/v;)? then Eq.
(23) may be written
1 rn do
sin@ ’

(25)
which we may compare with Eq. (5), with the integral re-
placed by its saddle point approximation and 7,(x) by

IT=—g—mn,-A _., In{1+Ax?%in%0)}
T Uqg ¥ arcsin(x 172y

lim 3 T,(x)/Qn+1)— [

x—o0 S arcsin(x ~ 172
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(16). If n =x sin?6 it is seen that the two are equivalent
for large n, if the sum is replaced by an integral. As a
further check we evaluate (25) for the case A >>1, to yield
for x >>1

R=2mn a1 (ln(K)%lnMx)
w uo

Ll

+3 12

L[ In(4x)>—

} . (25a)

The relationship of this form with the asymptotic solu-
tion of (5) is evident. The origin of the difference between
the two equations is easily identified as due to the inade-
quate treatment of the thermal velocity distribution in
the approximation. This leads to two sources of error,
which we can separate. The first is due to the replace-
ment of the sum by an integral and the representation of
the digamma term by its asymptotic form; the second
contribution is from the neglected terms in the asymptot-
ic approximation. The effect of the summation in the
limit of large x can be calculated and shown to account
for nearly all the difference:

d6/sin6=y /2+In2—1

N
= lim 3 1/@n+1)=4 [ an /=y 2+ 1m2-1, @0

n=1
in agreement with (24a), and

lim 3 T,((n)/2n+1)— [

x—o 2 arcsin(x ~1/2)

In(x sin?0)d 0 /sin@= —(y /2+ In2—1)>—1+7?%/24=—0.589 099 362

N
— lim 3 4(n)/(2n +1)—%leln(n)dn/n=—(Y/2+ In2—1)2—2(1— 1n2)40.024 939 1492

n=1

More generally, if we define the integral

SEx=["" In{1+Bxsin‘0}d 0 /sin6 (28)

arcsin(x ~1/2

and proceed as before, we obtain for x sufficiently large
(=10)

S(A,x)=S(A,x)+[S"(A, 0 )—8"(A, )]

+(y/2+ In2—1)InA—1.767298 088 , (29)
where
(B, w)= 3 | [ *In(1+1/E Y
n=1

Xe—’dt]/(n —D2n+1), (30
$'&, )= [T in(1+1/EeNdt /t

(_l)mzm

m/36+ L[ mAP—1 3 —22— R<1
m=1 m
= — (31
(=D"A ™™ <
1 — A>1.
szzl m2

=—0.589099 369 . (27)

[

The terms S’(A, o) can be evaluated rapidly since the
sum is reasonably convergent unless A << 1, in which case
its value is not required. The integrals are obtained by
using either Gauss-Laguerre integration or the method of
steepest descent. In fact, we give later a useful approxi-
mation based on (29).

This is a fortunate result as S(A,x) is much easier to
evaluate than S (A,x). We only require results in the case
A>>1 or Ax3>>1 when the argument of the Coulomb
logarithm is large and theory based on cutoffs is satisfac-
tory. The case A >>1 is already covered by Egs. (5) and
(10) and by the approximations given earlier. The
separate case Ax>>>1 implies x >>1, i.e., the high field
case for which (25) may be used. For finite x Eq. (28) can
be rapidly evaluated numerically, for example, by a mid-
point Romberg method, but for large x suitable approxi-
mations will be developed.

IV. ZERO TEMPERATURE

In the limit v;—0, Eq. (28) is exact. Thus
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2 n AL [ 1+ B sint0)d0/sine , (32) S
T uy Jo

In(1+4)
0.8

R-=

where A=(mu32)?/(Ze?w/m)*. The integral can be eval-
uated analytically in terms of a set of expansions. 06

(a) A<1: In this case the argument of the Coulomb
logarithm is small and the cutoff approximation is not
valid. We include the result for completeness

So={ 0”/2 In[1+A sin®0]d 6 /sin6

0.4

0.2}
o0

= 3 (=) V[I()0(3r)/2nT(3n +1)]A" . (33)
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0.0 1 1 1 L 1 1 1 I ]
n=1 0.1 1 10 100 1000 10000
An accurate approximation is
~ FIG. 4. Plot of the zero temperature absorption function
Sp==0.815061In[1+0.65434A] . (34) plotted as So(A)/In(1+AX ) compared with its approxi-

b)A>1: mation (— — —).

! ~ . .
S0=fo In[1+ A sin®01d 6 /sind (6n —1)(6n —3)(6n —5)

% Fon 0™ (emon —2on —&) > T
+ [ In[& sin%01d 6 /sin0 non "
1
+ 7 m[1+1/K sin0)d 6 /sin6 , (35) cosf, (6n—1) . ,
1 sin“6;
6, _ (6n) (6n —2)
fo In[1+A sin®0]d 6 /sin6
1 [ 2 Tn+1) x 14462 =3) 29
= — — ———e n — — l
< [12 +3n§1 F(%)nn!A [I2—B(1+n/3]}, (6n —4)
(36)
T/2 K . 6 .
fel In[A sin%0]d 6 /sin6 #,=—In[tan(6,/2)]=In(z,) ,
—6 [%( 2%+ L 1n(&) In(r,)— 1 In(21,) ] B(z) is the beta function
" — 0 _l)n
1 [+ (— 1)y (z)= ‘ ,
3| _1—72—1— ’ (37 Pa= 2 Fm
[ n[1+1/& sin*601d 6 /sin6 and
1
(=D D 1) 6,=arcsin(1/A!/%) ,
n
= , (38 - —
2 " 38 £, =cot(6,/2)=KS+V[R—1] .
where A satisfactory approximation for this case is

0.969081n(1+0.527158), 1<A<10
So= 3{[1n2]2+—§-ln(7&)ln(t1)—[1n(t1/2)]2—172/12+t1_2}+17'2/72
+[BA " nt, +(2/72) cos(8,)(1+ 3sin’0, + ¥sin'd,)], A>10.

Figure 4 shows a plot of S,(A) compared with the approximations. For large A Eq. (35) reduces to
So=1(In[64A])>*—27%/9 .

V. FINITE TEMPERATURE

|

(39)

(40)

(41)

(42)

(44)

We may also carry out the integration of Eq. (28) for the case of finite temperature, although the results will clearly

only give an approximation to the exact theory (5). Thus, for the case x large we obtain
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2 x LT TR 12 — 2 2 ) (—)"'R" | 4
3[11n(4x) )+ In(A)[ + In(4x) ]+ L[ mA P —7*/4+7%/72+ L |72 /12— 3, | A<1
n=1
g(zax)z ) _ ) . (_1)(n—1)K—n _ 45)
3[1In(4x) )+ In(A)[ ; In(4x) | —7°/4+ 1 3, T A>1.

n=1

In the case A=0 this yields (44), as expected, and for
A >>1 an approximation to (11) and (12), which is in er-
ror by the terms investigated in (26) and (27). Alterna-
tively we may use Eq. (45) to suggest an approximation
for the correction S'(A,x) in the following form:

S, (A,x)+S'(A,x), A>1

So(B,x)—S8"(B,x), A<l (46)

S(A,x)=

Calculating the value of S(1,x) directly we find that to a
reasonable degree of accuracy

S'(1,x) _ S'(1,0) 0.9988
S"(1,x)  S"(l,0) 1.044

and that
S'(A,x)=~[In(1+125/A)/1n(126)]S"(1,x)

~0.20451In(1+125/A)S"(1,x) (46a)
and
S"(A,x)~[In(1+75A)/1n(76)]S""(1,x)
~0.2284In(1+75A)S"'(1,x) (46b)

to provide a simple approximation valid for x >2 with
reasonable accuracy if used with the forms for S, and S,
given earlier and with S, from (43). Figure 3 shows the
accuracy of these approximations.

VI. IMPACT APPROXIMATION FAILURE

There is one remaining problem arising when the im-
pact approximation fails as b,,, <b_, i.e.,, A<1l. In
general this is only a problem in weak fields u, <<v; and
as we noted in the Introduction at low temperature
Imv} <#iw. Thus we may consider the problem in the
context of the single-photon absorption model. The re-
lated problem in emission was discussed by Oster [15],
who showed that the change from classical to threshold
behavior was rapid and that good accuracy could be ob-
tained by a switch. Such an approach is also appropriate
in this case.

In the standard theory of bremsstrahlung emission, the
frequency dependence is generally described in terms of a
Gaunt factor g. This term averaged over velocity g car-
ries over directly into absorption. It was noted earlier
[14] that in the low field limit x —0, the term S (0) is
identical to the Gaunt factor g apart from a small numer-
ical factor associated with cutoff, namely,

S (0)=027/V3)g =27 /V3)g((2kT /y*m)/?) ,

where Iny*=y. This result must hold quite generally

even outside the range of the impact approximation. At
threshold v;—0, the Gaunt factor g=~1. Hence a suit-
able form that satisfies this limiting condition is to re-
place InA by

InA = max[ InA,5.359246] .

A similar correction can be applied in the quantum case
in the unlikely event of being required.

VII. THE QUANTUM LIMIT

If the electron wavelength exceeds the Landau parame-
ter the scattering at small impact parameters in essential-
ly quantum mechanical and described by the Born ap-
proximation. In this case the impact approximation is
also an asymptotic limit valid when the energy absorbed
per collision is much greater than the photon energy, i.e.,
muvy >>fiw [5]. In this approximation the Coulomb loga-
rithm appears naturally in the form (2) with

bmax 2mv2
—_— >>1 . 47)
fiw

b min

The absorption coefficient is readily calculated in this
limit if the collision can be described entirely within this
approximation by a direct extension of the theory
developed for classical collisions, but we require only the
simpler limits B=(4kT /%iw)*>>1 and B=Bx?>>1. In-
troducing the parameter S defined as before, we have,
provided A/B>1,

In(B)S(x)+2S,(x), kT— o

S(B,x)= So(B), kT—0, (48)
where S; and S, are given by (10) and (18) and
So(B)=1{In[16B]}*—m*/8, B>>1, (49)

an additional term 7%/24 being included to account for
the period when Bu, cos(wt) < 1 by analogy with the clas-
sical result (44).

For large fields x >>1 we may develop an approxima-
tion for S (3,x) analogous to (45),
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) _ _ (_1)(n—1)B_n _
2[4 In(4x)*+ In(B)[ } In(4x) ]+ 4[ nB—7?/6+ L {w?/6— 3 ————— |, B<I
o n=1 n
S(B,x)= _ (_1)(,,_1)E—n _ (50)
2[4 In(4x) P+ In(B)[ { In(4x)]—7?/6+1 § ————F—, B>1.
n=1 h

The small terms in large curly brackets represent com-
ponents introduced by the use of the Coulomb logarithm
in form (1) rather than (2) to allow for the invalid part of
the integral where Bu* is small. As before we may con-
veniently write

S.(B,x)+S"(B,x), B>1

SBX= \syB,x)—s"Bx), A<,

(51
where a reasonable matching function is

S'(B,x)=~0.16761n(1+100/8B) ,

More generally the transition from classical to quantum
behavior is not straightforward as either u, or vy in-
creases, as the electron may exhibit both types of
behavior within different parts of its cycle. Indeed within
a cycle where the scattering is quantum at its fastest limit
it will be classical at its slowest if vy is sufficiently small.
In this case it is relatively easy to evaluate the integral
form, but the thermal correction may be more difficult to
obtain. A relatively simple approximation is formed as a
correction to the classical results obtained earlier with
the condition A/B<1<A/B:

— (52) S=Sclass—Scorr ’ (53)
S"(B,x)=0.1676 In(1+10073) .
where
J
— *® A+3 /Re2)(n—1), —t —1\
Seors EI[T,,(x)/(zn+1)]f(m)1n(m /Bt Ve tdt /(n — 1)) (54)
- T/2 T W) .
= s In[A /B sin%0]d 6 /sind (55)
_ _1\(n—1),12n
=—[Int'?—2W(2A"* /") In(¢')—7?/12+ 3, 1—lln—2—‘— (56)
n=1
~1{1n[4A/B]})2—7*/12, K>, 57)

where t'='"2/[A'?+ (A —B)'/?] and we have made use
of the fact that in the quantum regime the Coulomb loga-
rithm in the form (2) may be used with little error. Com-
parisons of Egs. (45) and (50) show that this correction is
appropriate at the transition to a full quantum calcula-
tion (A/B=1) if the asymptotic forms are used, but com-
paring (14) and (48) reveals a small error associated with
the terms n =1 in the full sum. Since these correspond to
low velocity collisions, i.e., classical, the error in the use
of (53) will be small unless A/B~1 when a transition to
(51) is appropriate. The purely classical condition corre-
sponds to A/B < 1.

VIII. THE IMPACT APPROXIMATION FAILURE
AT HIGH FIELDS

For completeness we finally consider one final case of
relatively little importance at present, where the quiver
energy is much larger than the photon energy, which is
itself large compared to the thermal, i.e.,

mu >>%io >>mv} . (58)

The solution to this problem is given by the Born approx-
imation and was derived some time ago [16,17]. Improv-
ing the accuracy of the logarithm arising from the cutoff

of the asymptotic form of the Bessel function J,(z)
(namely, z =n instead of 1), the photon absorption cross
section for the simultaneous absorption of n photons in
the limit v—0 is

7wn;Z%*
cE’n

and summing over n up to the classical limit, the rate is
given by (19) with

S =1ln(mu}/fo) .

g, =

n In(mu3 /n#iw) (59)

(60)

This result differs from S,(B) in Eq. (49) by a factor of 2.
The latter is calculated outside the range of its validity,
and should strictly be used only as a term in the approxi-
mation (51).

IX. DISCUSSION

In this paper we have developed a series of expressions
for the energy increase during electron-ion collisions by
inverse bremsstrahlung. The results form a continuous
set of approximations that span the parameter space
within which the photon energy is small, i.e., the radia-
tion field classical. The calculations are based on the im-
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pact approximation for inverse bremsstrahlung, which
has a simple phenomenological interpretation, but has
also been showed to be an asymptotic limit of more so-
phisticated collision theory. The simplicity of this model
in which individual collisions can be isolated and not con-
sidered within some form of ensemble averaging is of
great advantage in formulating convenient solutions
within different regions of parameter space. Using a gen-
eral formulation developed earlier, the asymptotic form is
shown to correspond to simple temporal averaging. The
results have been obtained using an isotropic Maxwell-
Boltzmann distribution, although it is well known that
significant departures from this form occur. At inter-
mediate field strengths u,~wv; electron-electron col-
lisions cannot maintain a thermal distribution against the
changes induced by ion-electric collisions. This leads to
preferential heating of slow electrons and narrower distri-
bution with reduced absorption. This effect is well
known following the work of Langdon [7]. However, we
may argue that if the correct form of the Spitzer loga-
rithm is used, as in Eq. (1), rather than a constant average
value, as is conventional, this effect is reduced. The
singularity in the cross section as v —0 is replaced by a
zero and the heating of slow electrons reduced. The dis-
tribution may, depending on the value of A, more closely
match a Maxwellian than is conventionally assumed.

At high fields (u,>>vy) electron-ion scattering essen-
tially imparts a transverse velocity to the electrons. In
consequence the distribution is determined by that of the
scattering, i.e., Gaussian from the central limit theorem,
in the transverse plane and Gaussian with a smaller ran-
dom velocity in the field direction, as found by Jones and
Lee [8]. In consequence a Maxwellian is a reasonable ap-
proximation; indeed in these conditions the absorption
rate is essentially determined by the quiver, rather than
the thermal, motion and the actual distribution has little
effect.

We have carried out extensive simulations of inverse
bremsstrahlung absorption using Monte Carlo methods.
As the calculation is essentially within the impact ap-
proximation and uses multiple small angle scattering de-
scribed by (1), the calculations examine the validity of the
Maxwellian distribution condition. A typical result is
shown in Fig. 5 for the mean electron energy gain from
radiation of wavelength 1.06 yum in a plasma with Z =1
at an electron density of 10 cm™3 with an initially
thermal distribution at 10 eV temperature. It is easily
shown that in this case the range of intensities considered
(102-10"7 W/cm?) covers the range x <<1 to x >>1.
Despite using relatively few electrons (1000) and neglect-
ing electron-electron collisions, the results for the elec-
tron energy after 0.4 ps are in good agreement with the
formulas proposed over the intensity range. Since the
electron scattering interval was & of the laser period,
each electron underwent about 3500 scatterings, giving a
reasonable statistical averaging—checks with additional
electrons and collisions showed that the Monte Carlo re-
sults were accurate. The results show very much the ex-
pected pattern. At high fields (x * 1) the approximations
are reasonably accurate, but at low fields (x $1) the
modification of the distribution as the electrons heat
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FIG. 5. Comparison of various forms of the absorption rate,
low field Maxwellian (M) and Langdon (L), Schlessinger and
Wright (S), and high field (H) heating a 10 eV temperature
plasma of Z=1 at n,=10% cm™3, with direct Monte Carlo
simulation of electron-ion collisions only, at constant intensity
I, for 0.4 psec.

leads to a reduction of the absorbed energy, though not
to quite such a low value as predicted by the standard
Langdon form for reasons discussed earlier. Under these
conditions the Langdon formula is generally found to be
quite accurate once the distribution has settled into its
stationary form provided the field is not strong. The
standard high field forms, e.g., that due to Schlessinger
and Wright [18], tend to underestimate the absorption at
high fields. This can be ascribed to two causes. First, the
approximation used does not contain the additional In(x)
term in the asymptotic form of &(x). Second, the
Coulomb In used is based on Eq. (1) and the thermal
speed vy alone. The additional term &,(x) in the result
associated with the variance of the total speed v in the cy-
cle is neglected. The second is the larger contribution
and raises the question of its validity, but it is justified on
three grounds: it appears naturally from the asymptotic
forms that give rise to the impact approximation [4,5]; it
is essential to properly include this term to ensure a
nonzero absorption in a Coulomb field at low intensity
[1,2,5]; the term associated with the §,(x) gives addition-
al terms (—3y) or (—2y) for classical or quantal col-
lisions, respectively, as x —0. These terms appear natu-
rally in the accurate evaluations for low field single-
photon absorption [12].

As a second example we examine the problem con-
sidered by Rae and Burnett [19] involving the heating
rate of a plasma with Z =8 at an electron density 10%°
cm ™ ? and temperature 30 eV with 0.248 um wavelength
radiation. This is an interesting case as at low fields
where the total velocity is near thermal, the condition
b nax >> by, is not fulfilled and the standard Coulomb In
would be negative. Rae and Burnett [19] appear to have
circumvented the problem by using the dc outer cutoff
bax=Ap. In fact the Gaunt factor correction is re-
quired. Figure 6 shows the calculated heating rate calcu-
lated with our form and with Rae and Burnett’s results
using Schlessinger and Wright’s correction. At low in-
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FIG. 6. Heating rate in a plasma with Z =8 at ion density
1.25X 10% c¢cm ™3 and low wavelength 0.248 um as a function of
intensity. The heating rate ( ) is compared with Schless-
inger and Wright’s formula with the dc Coulomb logarithm
(- - - -)and with the correct form (— — —).

tensity they significantly overestimate the heating due to
the incorrect logarithm. However, at high intensity the
neglected terms in the correction become important and
the results are underestimated.

In order to assess the model for the specific problem of
ATI breakdown, we have investigated the breakdown of
neon by a laser pulse of full width half maximum dura-
tion 350 ps at wavelength 0.25 um at intensity 1.5X 10'®
W/cm? for various densities, assuming that all collisions
are classical (Fig. 7). The ATI model is used in the tun-
neling approximation of Ammosov, Delone, and Krainov
[20] with an energy distribution given by Delone and
Krainov [21] or, equivalently, by Burnett and Rae [19].
Both electron-ion and electron-electron collisions are
treated by a multiple scattering probability distributions
(equivalent to Fokker-Planck), similar (but corrected) to

160
Energy (eV)

1 -l

1 I 1 1 1 L 1
o 1.0 2.0 3.0 4.0 5.0

lon Density (10"%cm®)

FIG. 7. Calculation of the electron energy € as a function of
ion density n; in the breakdown of neon by a pulse of 350 fs
duration and 1.5X 10" W/cm? peak intensity, of 0.254 um
wavelength is plotted. The results of direct Monte Carlo calcu-
lations with electron relaxation are shown. The curves are cal-
culated for low field Maxwellian (M) and Langdon (L) and high
field (H) absorption rates.
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FIG. 8. Dependence of electron temperature on ion density
for neon gas irradiated by a 100 ps, 2.5X10"7 W/cm? pulse of
wavelength 0.248 um.

that of Takizuka and Abe [22]. The electron-electron
collisions are cut off at the Debye length, but the
electron-ion collisions at v /w. The calculations were per-
formed with 100000 electrons. The agreement between
the results is good. In this case the initial electron veloci-
ty following ionization is in the field direction and tends
to compensate the transverse dominance associated with
absorption to produce a nearly isotropic distribution.
These results may be considered in relation to the work
of Penetrante and Bardsley [23]. In that work the ATI
energy at an intensity 10'® W/cm? in neon using 0.248
pm radiation is calculated at about 80 eV, whereas we es-
timate a value of about 36 eV, consistent with those quot-
ed by Rae and Burnett [19]. This discrepancy is difficult
to understand, but may arise from differences in the pulse
shape, as the ATI energy is sensitive to the initial rate of
rise of the pulse.

The role of heating in ATI experiments was investigat-

1001
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FIG. 9. Dependence of electron temperature on duration of a
2.5X 10" W/cm? pulse of 0.248 um wavelength in neon at a
density of 2.5X 10'® cm .
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FIG. 10. Dependence of electron temperature on wavelength
for a pulse of 100 ps duration, 3.5X 107 W/cm? intensity at a
neon density 2.5X 10'8 cm ™3,

ed by Rae and Burnett [19] using a model similar to the
analytic form used here, but with an unsatisfactory ex-
pression for the collisional absorption as noted.earlier. In
view of their conclusions regarding the marginal viability

of prospective x-ray laser schemes, we have repeated
their calculations. The results are shown in Figs. 8, 9, and
10 giving the scaling of electron energy with density, in-
tensity, and laser wavelength, respectively. The results,
despite the error, are remarkably similar and their con-
clusions therefore remain valid. The reason for the
agreement is interesting. For short wavelengths ATI
heating is small and collisional heating significant. How-
ever, in this case the full correction &,(x) must be used
and gives an effective result very similar to that used by
Rae and Burnett. At longer wavelengths, the high field
falloff and increased ATI energy renders collisions rela-
tively unimportant.

Finally, we note that a number of the formulas derived
here have previously appeared. Silin [24] devised the
basic form of (11) for classical collisions and Brysk [29]
for quantum collisions, but without taking into account
the variation in the Coulomb logarithm. The importance
of this term was noted by the present author and included
as an additional term to the usually dominant one. Ex-
pressions equivalent to (48), (49), and (60) have recently
been obtained within the Born approximation by Polish-
chuk and Meyer-Ter-Vehn [26].

APPENDIX: THE ASYMPTOTIC LIMIT

Consider first the terms
T, (x)=Vax"~VVe "*M(L,(n +1),x)/n!
for large x. The hypergeometric function

N _T(n+1) C(m+1/2) x™
M+ DX)="E072) Z Tim tn+1) m!

1 Tntl) (+n

= Var T(1/2)

using Stirling’s theorem for the gamma functions.

(m +n+1)172
=y (m+1)172

(A1)

(A2)

exp{m +mInx —(m +n +1)In(m +n +1)} (A3)

The argument of the exponential has a maximum if

m =[x —(n +1)]. Hence, replacing the sum by an integration performed by the method of steepest descent,

C(n+1) x (nH1/2ex
I(1/2) (1—n/x)'?’

M(L,(n+1)x)= n<x,

(A4)

For n > x the exponential in (A3) are decaying and give little contribution. Hence we obtain the result quoted earlier

(16). -
From Eq. (18) the general expression for S is

S=3 [T,(x)/(2n +1)]f0°° In(1+ZA3) "Vt /(n —1)1 .

n=1

For x large it follows from (A4) that the bulk of the contribution to the sum is from the terms with n large. Hence we
may perform the integral by the method of steepest descent and again replace the sum by an integral

w  In(1+An3)dn
S~ ;
fl 2n +1)(1—n/x)17?

(AS)

substituting n =x sin?0 we obtain (25). The sources of the error discussed in the text can clearly be seen in this calcula-
tion arising from neglect of higher-order terms in the replacement of sums by integrals and the improper treatment of

initial terms in the sums.
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